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This paper presents the attitude tracking of a class of satellite control systems under external disturbances. Once the error dynamics
of the satellite are obtained, a nonlinear transformation expresses them in a suitable representation for the design of a high-gain
observer and backstepping control. The observer-based backstepping controller is then designed to drive the angles of the satellite
dynamics to their desired values in the presence of exogenous disturbances. Closed-loop stability of the proposed controller is
demonstrated via Lyapunov theory, and its effectiveness is confirmed through numerical simulations.

1. Introduction

A great number of satellite systems are orbiting Earth for
various purposes. These satellites are often classified in
terms of their orbit, such as low Earth orbit, medium Earth
orbit, geostationary orbits, and geosynchronous orbits [1,
2]. Alternatively, they can be classified according to their
mechanism of control torque generation, such as thrusters,
reaction wheels, magnetic torquer rods, and control moment
gyroscopes [3–5]. The design of attitude tracking control
for satellite systems poses challenges to engineers, especially
when the satellite is under the influence of external distur-
bances. Therefore, a successful control design must ensure
stability of the closed-loop system.

Several strategies have been proposed for satellite control
systems (SCSs). For instance, actuator failure compensation
via adaptive backstepping control has been addressed in [6].
In addition, a nonsingular terminal sliding mode control has
been proposed for attitude tracking of small satellites by using
a combined energy and attitude control system [7]. Likewise,
magnetic attitude control has been developed for SCSs with
uneven inertial distributions by combining Kalman filtering
and feedforward control to estimate and reject external
disturbances [8]. Nonlinear sliding mode control for attitude
tracking of a magnetically actuated satellite is introduced

in [9]. More recently, a three-stage sliding mode control
for attitude tracking of a satellite system with uncertain
inertiamatrix and torque disturbance has been proposed [10].
Attitude control of a rigid body with uncertain inertia matrix
using sliding mode control along with a state observer has
also been addressed [11]. In [12], nonlinear model predictive
control is applied to a flexible satellite, where the controller
parameters are optimized by a genetic algorithm. Satellite
attitude stabilization has also been addressed using the state-
dependent Riccati equation control method [13]. Horri et
al. [14] developed a gain-scheduled controller for a SCS
based on inverse optimal control to improve the settling time
of a benchmark proportional–derivative controller. Attitude
control has also been addressed using an adaptive controller
based on a radial basis function neural network [15]. A fault-
tolerant control law based on sliding mode control has been
proposed for a SCS under solar perturbations and actuator
faults [16]. Xiao et al. [17] addressed attitude tracking of a
flexible spacecraft via an adaptive sliding mode backstepping
controller.

Unlike previous studies, this work combines backstep-
ping control with a high-gain observer for attitude tracking
of a SCS under external disturbances. Backstepping control
is a simple, flexible, and versatile approach that provides
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high stability and robustness. Moreover, the use of a high-
gain observer offers advantages over many other nonlinear
observers. Notably, such observer has a simple design, fast
convergence, and guaranteed stability with the appropriate
choice of eigenvalues. Nevertheless, to fully exploit this
observer, the satellite dynamics must be expressed in feed-
back form.Therefore, a nonlinear transformation is proposed
in this paper to achieve this representation, which is suitable
for appropriate observer design.

The contributions in this paper are threefold. First, a
system transformation is proposed for the dynamics of the
SCS to obtain a feedback form. Second, a high-gain observer
is designed to estimate the rotational angles and angular
velocities of the SCS.Third, a robust backstepping control law
is derived for the satellite angles to track a reference trajectory
under external disturbances. The remainder of this paper is
organized as follows. The kinematic and dynamic models of
the SCS considered in this study are presented in Section 2. In
Section 3, the error dynamics are formulated, and a nonlinear
transformation is introduced to enable the use of the high-
gain observer and to facilitate the design of the backstepping
controller. Section 4 describes high-gain observers, which are
the basis for the robust backstepping controller introduced in
Section 5. Simulation results of the proposed controller are
reported in Section 6. Finally, some concluding remarks are
given in Section 7.

2. Kinematic and Dynamic Models

The kinematic model of the SCS is given by [6]

̇𝜃p = 𝜔𝑦 sin (𝜃r) + 𝜔𝑧 cos (𝜃r) ,
̇𝜃y = (𝜔𝑦 cos (𝜃r) − 𝜔𝑧 sin (𝜃r))

cos (𝜃p) ,
̇𝜃r = 𝜔𝑥 − tan (𝜃p) (𝜔𝑦 cos (𝜃r) − 𝜔𝑧 sin (𝜃r)) ,

(1)

where 𝜃p, 𝜃y, and 𝜃r represent the pitch, yaw, and roll angles of
the satellite, respectively, and 𝜔𝑥, 𝜔𝑦, and 𝜔𝑧 are the satellite
angular velocities around the corresponding axis with respect
to the inertial frame.

Assumption 1. Therotational angles vary in a small range, and
the satellite does not perform vertical maneuvers.

Define the state vectors as 𝜃 = [𝜃p 𝜃y 𝜃r]T and 𝜔 =
[𝜔𝑥 𝜔𝑦 𝜔𝑧]T. The uncertain dynamic model of the SCS is
given by

𝐽𝜔̇ = −𝜔∗𝐽𝜔 + 𝐷𝑢 (𝑡) + 𝐹d (𝜔 (𝑡) , 𝑡) , (2)

where 𝐽 ∈ R3×3 is a symmetric positive definite inertia
matrix, 𝐷 ∈ R3×3 is the actuator distribution matrix
assumed to have an orthogonal configuration (i.e.,𝐷 = 𝐼3×3),

𝐹d(𝜔(𝑡), 𝑡) is the vector of external disturbances, and 𝜔∗ is a
skew-symmetric matrix given by

𝜔∗ = [[[
[

0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

]]]
]
. (3)

Furthermore, disturbance 𝐹d(𝜔(𝑡), 𝑡) is assumed to be norm
bounded: 󵄩󵄩󵄩󵄩𝐹𝑑 (𝜔 (𝑡) , 𝑡)󵄩󵄩󵄩󵄩 ≤ 𝑘 ‖𝜔‖ , (4)
where ‖ ⋅ ‖ denotes the Euclidian vector norm and 𝑘 > 0 is
a scalar. Using (1)–(3), the overall dynamics can be expressed
as

̇𝜃 = 𝑓1 (𝜃) 𝜔,
𝜔̇ = 𝑓2 (𝜔) + 𝑔2𝑢 + 𝐽−1𝐹d (𝜔, 𝑡) ,
𝑦 = 𝜃,

(5)

where 𝑓2(𝜔) = −𝐽−1𝜔∗𝐽𝜔, 𝑔2 = 𝐽−1𝐷, and

𝑓1 (𝜃) =
[[[[[
[

0 sin (𝜃r) cos (𝜃r)
0 cos (𝜃r)

cos (𝜃𝑝) − sin (𝜃r)
cos (𝜃p)1 − tan (𝜃p) cos (𝜃r) tan (𝜃p) sin (𝜃r)

]]]]]
]
. (6)

3. Attitude Tracking via Error Dynamics

To formulate the attitude tracking problem, the error dynam-
ics must be determined. To this end, we define error vector𝑒 = [𝑒p 𝑒y 𝑒r]T = 𝜃 − 𝜃d such that

𝑒p = 𝜃p − 𝜃dp ,
𝑒y = 𝜃y − 𝜃dy ,
𝑒r = 𝜃r − 𝜃dr ,

(7)

where 𝜃d is a bounded vector of the desired reference
trajectories and assumed to have continuous first and second
derivatives. Taking the time derivative of the error vector, the
error dynamics can be written as

̇𝑒 = 𝑓 (𝑒) 𝜔 − ̇𝜃d, (8)
where
𝑓 (𝑒)

=
[[[[[[
[

0 sin (𝑒r + 𝜃dr ) cos (𝑒r + 𝜃dr )
0 cos (𝑒r + 𝜃dr )

cos (𝑒p + 𝜃dp) − sin (𝑒r + 𝜃dr )
cos (𝑒p + 𝜃dp)1 − tan (𝑒p + 𝜃dp) cos (𝑒r + 𝜃dr ) tan (𝑒p + 𝜃dp) sin (𝑒r + 𝜃dr )

]]]]]]
]
. (9)

For state transformation, let us consider the dynamics[ ̇𝑒T 𝜔̇T]T. To facilitate the design of the backstepping control
law and enable the design of the high-gain observer, a change
of variables is proposed to express the system in a feedback
form. To this end, consider state vector 𝑧(𝑡) = [𝑧T1 𝑧T2 ]T such
that
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𝑧1 = 𝑒 = 𝜃 − 𝜃d,
𝑧2 = ̇𝑒 = 𝑓 (𝑒) 𝜔 − ̇𝜃d, (10)

where subvector 𝑧1 = 𝑒 = [𝑧1p 𝑧1y 𝑧1r]T. Taking the time
derivative of (10), the SCS dynamics in the new coordinates
can be expressed as

𝑧̇1 = 𝑧2,𝑧̇2 = 𝑓𝑧 + 𝑔𝑧𝑢 (𝑡) + 𝑑 (𝑡) ,𝑦𝑧 = 𝑧1,
(11)

where

𝑓𝑧 = ̇𝑓 (𝑧1) 𝑓 (𝑧1)−1 𝑧2 + 𝑓 (𝑧1) 𝑓2 (𝜔)
+ ̇𝑓 (𝑧1) 𝑓 (𝑧1)−1 ̇𝜃d − ̈𝜃d,

𝑔𝑧 = 𝑓 (𝑧1) 𝑔2,
𝑑 (𝑡) = 𝑓 (𝑧1) 𝐽−1𝐹d (𝜔, 𝑡) ,

(12)

with

̇𝑓 (𝑧1)

=
[[[[[
[

0 0 0
0 sin (𝑧1p + 𝜃dp) cos (𝑧1r + 𝜃dr )

cos2 (𝑧1p + 𝜃dp)
− sin (𝑧1p + 𝜃dp) sin (𝑧1r + 𝜃dr )

cos2 (𝑧1p + 𝜃dp)0 −sec2 (𝑧1𝑝 + 𝜃dp) cos (𝑧1r + 𝜃dr ) sec2 (𝑧1p + 𝜃dp) sin (𝑧1r + 𝜃dr )

]]]]]
]
(𝑧̇1p

+ ̇𝜃dp)

+
[[[[[[
[

0 cos (𝑧1r + 𝜃dr ) − sin (𝑧1r + 𝜃dr )
0 − sin (𝑧1r + 𝜃dr )

cos (𝑧1p + 𝜃dp)
− cos (𝑧1r + 𝜃dr )
cos (𝑧1p + 𝜃dp)0 tan (𝑧1𝑝 + 𝜃dp) sin (𝑧1r + 𝜃dr ) tan (𝑧1p + 𝜃dp) cos (𝑧1r + 𝜃dr )

]]]]]]
]
(𝑧̇1r

+ ̇𝜃dr ) .

(13)

Remark 2. The existence of 𝑓(𝑧1)−1 is established by recog-
nizing that the determinant of 𝑓(𝑧1) is given by |𝑓(𝑧1)| =−1/ cos(𝑧1p + 𝜃dp). Given that angles are assumed to vary in a
small range (Assumption 1), the term cos(𝑧1p+𝜃dp) is nonzero.
Therefore, the determinant of 𝑓(𝑧1) is bounded and 𝑓(𝑧1)−1
exists.

Remark 3. The boundness of 𝑓(𝑧1) is established by recog-
nizing that the trigonometric functions sin(⋅) and cos(⋅) are
bounded for all 𝜃 ∈ [0, 2𝜋]. Furthermore, as the angles
are assumed to vary in a small range (Assumption 1), terms
having the function cos(⋅) are nonzero, and those having the
function tan(⋅) are bounded.
4. Observer Design

For many control design applications, some or even all
the system states may not be measurable. Therefore, an
observer can be used to estimate the states based on system
measurements. In the proposed attitude control, a high-gain
observer is adopted. Consider the dynamics in (11) in the form

𝑧̇1 = 𝑧2,𝑧̇2 = 𝑓 (𝑧, 𝑢, 𝑑) ,
𝑦𝑜 = 𝑧1.

(14)

Assuming that the function 𝑓(⋅) is Lipschitz continuous and
that the external disturbances vector 𝑑(𝑡) is bounded and
differentiable, the corresponding high-gain observer is given
by [18]

̇̂𝑧1 = 𝑧̂2 + ℎ1 (𝑦𝑜 − 𝑦o) ,̇̂𝑧2 = ℎ2 (𝑦𝑜 − 𝑦o) , (15)

where ℎ1 and ℎ2 are chosen such that matrix

[−ℎ1 1−ℎ2 0] (16)

obeys the Hurwitz criterion. Furthermore, the observer gains
are chosen such that

ℎ1 = 𝑘1𝜀 ,
ℎ2 = 𝑘2𝜀2

(17)

where 𝑘1, 𝑘2 > 0 are scalars and 𝜀 > 0 is a small number
chosen to improve the convergence of the observer dynamics.

From the dynamics in (11), the term 𝑓𝑧 is locally Lipschitz
continuous, and the reference trajectory 𝜃d is bounded and
assumed to be continuous in the first and second derivatives.
Furthermore, the disturbance signal 𝑑(𝑡) defined in (12) is
bounded.
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5. Robust Backstepping Control Design
In this section, a control design based on the backstepping
technique is proposed for the SCS. Backstepping control is
a systematic procedure based on the recursive application of
Lyapunov functions [19]. The main result from this paper is
presented below.

Proposition 4. 	e nonlinear dynamics of the uncertain SCS
given by (5) are asymptotically stable under the following robust
backstepping control law:

𝑢bs (𝑡) = −𝑔−1𝑧 (𝑓𝑧 + 𝛼1𝑧̂2 + 𝛼2𝜁 + 𝑅𝑇𝜁𝜂 (𝑡)) , (18)

where

𝜂 (𝑡) = 𝑘 󵄩󵄩󵄩󵄩𝑓 (𝑧̂1)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝐽−1󵄩󵄩󵄩󵄩󵄩 ‖𝜔̂‖󵄩󵄩󵄩󵄩𝜁𝑇𝑅󵄩󵄩󵄩󵄩 + 𝛼3, (19)

𝛼1, 𝛼2, and 𝛼3 are positive scalars, 𝑅 ∈ R3×3 is a symmetric
positive definite matrix, 𝜁 = 𝑧2 − 𝜙(𝑧1), with 𝜙(𝑧1) = −𝛼1𝑧1,
and the hat above some variables denotes estimated values.

Proof. Consider the nonlinear dynamicalmodel given by (11).
The design of the backstepping controller first considers 𝑧2 as
a virtual control variable for the dynamic equation of 𝑧̇1(𝑡).
The objective is to design control law 𝜙(𝑧1) = 𝑧2 such that𝑧1 󳨀→ 0 as 𝑡 󳨀→ ∞. Let 𝑉1 = (1/2)𝑧𝑇1𝑄𝑧1 be a Lyapunov
function candidate, where 𝑄 is a symmetric positive definite
matrix. Taking the time derivative of 𝑉1 along the dynamic
trajectories of 𝑧̇1(𝑡) gives

𝑉̇1 = 𝑧𝑇1𝑄𝑧2. (20)

Choosing 𝑧2 = 𝜙(𝑧1) = −𝛼1𝑧1, where 𝛼1 > 0 is a design
parameter, (20) becomes

𝑉̇1 = −𝛼1𝑧𝑇1𝑄𝑧1. (21)

As 𝑉̇1 < 0, the dynamics of 𝑧̇1 are asymptotically stable. Next,
the stability of the overall dynamics for (11) is determined.
Define error vector 𝜁 = 𝑧2 − 𝜙(𝑧1) = 𝑧2 + 𝛼1𝑧1 and consider
Lyapunov function candidate 𝑉2 = 𝑉1 + (1/2)𝜁𝑇𝑅𝜁. Taking
the time derivative of 𝑉2 along the trajectories of (11) gives
𝑉̇2 = 𝑉̇1 + 𝜁𝑇𝑅 ̇𝜁

= −𝛼1𝑧𝑇1𝑄𝑧1 + 𝜁𝑇𝑅 (𝑓𝑧 + 𝛼1𝑧2 + 𝑔𝑧𝑢 (𝑡) + 𝑑 (𝑡)) .
(22)

Substituting 𝑑(𝑡) and 𝑢(𝑡) for their equivalent forms in (12)
and (18), respectively, yields

𝑉̇2 = −𝛼1𝑧𝑇1𝑄𝑧1 + 𝜁𝑇𝑅 (𝑓𝑧 + 𝛼1𝑧2
− 𝑔𝑧𝑔−1𝑧 (𝑓𝑧 + 𝛼1𝑧̂2 + 𝛼2𝜁 + 𝑅𝑇𝜁𝜂 (𝑡))
+ 𝑓 (𝑧1) 𝐽−1𝐹d (𝜔, 𝑡))

(23)

Motivated by the results in [18, 20] for the high-gain observer
design, by choosing 𝜀 small enough, the error between the
system states and the estimated states converges exponen-
tially to zero. Hence, the estimates 𝑔𝑧, 𝑓𝑧, 𝑧̂2 converge to

𝑔𝑧, 𝑓𝑧, 𝑧2 in a very short time. Therefore, we can assume that,
for 𝑡 ≥ 𝑇, where 𝑇 is a very small time, expression (23)
reduces to

𝑉̇2 = −𝛼1𝑧𝑇1𝑄𝑧1 − 𝛼2𝜁𝑇𝑅𝜁 + 𝜁𝑇𝑅𝑓 (𝑧1) 𝐽−1𝐹d (𝜔, 𝑡)
− 𝜁𝑇𝑅𝑅𝑇𝜁𝜂 (𝑡) . (24)

Finally, from (4) bounding the exogenous signal 𝑑(𝑡), using
(19) for 𝜂(𝑡), and considering that, for any symmetric positive
definite matrix 𝑃, the quadratic form 𝑥𝑇𝑃𝑥 ≥ 𝜆min(𝑃)‖𝑥‖2,
where 𝜆min(𝑃) is the smallest eigenvalue of matrix 𝑃, (24) is
bounded as follows:

𝑉̇2 ≤ −𝛼1𝜆min (𝑄) 󵄩󵄩󵄩󵄩𝑧1󵄩󵄩󵄩󵄩2 − 𝛼2𝜆min (𝑅) 󵄩󵄩󵄩󵄩𝜁󵄩󵄩󵄩󵄩2
− 𝛼3 󵄩󵄩󵄩󵄩󵄩𝜁𝑇𝑅󵄩󵄩󵄩󵄩󵄩2 .

(25)

As 𝑉̇2 < 0, the closed-loop system is asymptotically stable.
Therefore, 𝑧1, 𝜁 󳨀→ 0 as 𝑡 󳨀→ ∞. Finally, from the
transformation in (10), it can be easily shown that 𝜃 󳨀→ 𝜃d as𝑡 󳨀→ ∞. Thus, the proposed controller achieves asymptotic
tracking.

6. Simulation Results

The nonlinear dynamics of the uncertain SCS in (5) were
simulated under the application of the proposed robust
backstepping control law given by (18) and (19). The external
disturbances were set to

𝐹d (𝜔, 𝑡)
= 0.5 [sin (𝜔𝑥 (𝑡)) sin (𝜔𝑦 (𝑡)) sin (𝜔𝑧 (𝑡))]T , (26)

and the vector of reference trajectories to

𝜃d (𝑡) = [𝜃dp (𝑡) 𝜃dy (𝑡) 𝜃dr (𝑡)]T
= −0.5 [sin (0.1 𝑡) sin (0.1 𝑡) sin (0.1 𝑡)]𝑇 . (27)

In addition, the initial conditions were set to

[𝜃𝑝 (0) , 𝜃𝑦 (0) , 𝜃𝑟 (0) , 𝜔𝑥 (0) , 𝜔𝑦 (0) , 𝜔𝑧 (0)]𝑇
= [−0.8, 0.4, 0.7, 0, 0, 0]𝑇 , (28)

the inertia matrix to

𝐽 = [
[
20 0.9 00.9 17 00 0 15

]
]
, (29)

and the gains of the backstepping control to 𝛼1 = 1.2, 𝛼2 =1.3, and𝛼3 = 0.07.The actuator distributionmatrix𝐷 and the
positive definite matrix 𝑅 were chosen to be equal to identity𝐼3×3. The simulations considered two cases: the case when all
state variables are measurable and the case when the state
variables are not measurable. A high-gain observer is used
for the latter.

Figures 1–3 show the simulation results when all the
state variables are measurable. Figure 1 shows the asymptotic
convergence of the satellite angles towards the desired angle
trajectories. As perfect tracking is achieved, the error trajecto-
ries between the actual and the desired angles tend to zero, as
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Figure 1: Pitch 𝜃p, yaw 𝜃y, and roll 𝜃r angles of simulated SCS (solid lines) and desired trajectories (lines with circles) for the no observer
case.
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Figure 2: Error trajectories of pitch, yaw, and roll angles for the no observer case.

shown in Figure 2. Figure 3 depicts the control action exerted
by the robust backstepping controller. These control signals
describe the torques generated by the actuators causing the
satellite to follow the desired path.

Next, the uncertain nonlinear dynamics of the SCS
were simulated when a high-gain observer was required

to estimate the system states. The initial conditions of the
satellite system were set to

[𝜃p (0) , 𝜃y (0) , 𝜃r (0) , 𝜔𝑥 (0) , 𝜔𝑦 (0) , 𝜔𝑧 (0)]T
= [−0.4, 0.2, 0.5, 0, 0, 0]T

(30)
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Figure 3: Time response of control inputs for the no observer case.
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Figure 4: Pitch 𝜃p, yaw 𝜃y, and roll 𝜃r of simulated SCS (solid lines) and observer estimated states (lines with asterisks).

and the observer initial conditions to

[𝜃p (0) , 𝜃y (0) , 𝜃r (0) , 𝜔̂𝑥 (0) , 𝜔̂𝑦 (0) , 𝜔̂𝑧 (0)]T
= [0.1, 0.4, 0.1, 0.3, 0.3, 0.3]T . (31)

The robust backstepping controller gains were set to 𝛼1 = 0.1,𝛼2 = 0.5, and 𝛼3 = 0.04, and the high-gain observer gains in
(15) to ℎ1 = 4, and ℎ2 = 4.

Figures 4–8 show the simulation results with the high-
gain observer. Figures 4 and 5 show the effectiveness and fast
convergence of the observer. Specifically, Figure 4 shows the
asymptotic convergence of the estimated angles to the actual
angles of the satellite system. Figure 5 depicts the asymptotic
convergence of the estimated angular velocities to the actual
angular velocities of the satellite system. The convergence
of the satellite angles to the desired angle trajectories under
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Figure 5: Angular velocities 𝜔𝑥, 𝜔𝑦, and 𝜔𝑧 of simulated SCS (solid lines) and observer estimated states (lines with asterisks).
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observer.

external disturbances is depicted in Figure 6. The error
trajectories between actual and desired angles tend to zero,
as shown in Figure 7. Finally, the evolution of the actuator
control signals driving the satellite is depicted in Figure 8.
The proposed robust backstepping control in (18) and (19) has
successfully driven the satellite angles to their desired values,
thus achieving asymptotic attitude tracking.

7. Conclusion

Attitude tracking for a class of SCS using a high-gain
observer was addressed in this paper. The error dynamics
of the SCS are first obtained, to then introduce a nonlinear
transformation for expressing the system in feedback form,
which enables the design of a high-gain observer. Then,
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Figure 8: Time response of control inputs for the high-gain observer case.

a robust control based on backstepping control methodology
was designed to drive the error dynamics to zero under
exogenous perturbations, thus achieving attitude tracking.
The asymptotic stability of the closed-loop system was estab-
lished, and the simulation results showed the effectiveness of
the proposed controller to achieve asymptotic convergence of
the output trajectories to the desired reference values.
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